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( \f The free elettron laser instability is investigated for a
v - (
N { relativistic annuflar electron beam propagating turough a helical wiggler

..magnetic field. it is assumed that the beam 1is thin, with radial

o \thickness {2a) much smaller than the beam radius (Rg;, and that

f ~7; v/%s <« 1, where g‘is Budker's parameter. The stability analysis is
car;ied out within the framework of the linearized Vlasov-Maxwell
equations for perturbations with general azimuthal harmonic number £

and radial mode number s, including the important influence of (a)

finite beam geometry in the radial direction, (b) positioning of the

r
beam radius relative to the outer conducting wall (RO/Rc)’ and (c) finite

?1' wiggler amplitﬁde\TﬁB). All of these effects are shown to have an
-~ important influence on stability behavior. Moreover, the maximum
coupling between the transverse and longitudinal modes increases
substantially with increasing radial mode number s, It is also
found that the transverse magnetic (TM) mode has slightly larger
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growth rate than the transverse electric (TE) mode.
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I. INTRODUCTION

There 1s a growing literature on the free electron laserl-7

which generates coherent electromagnetic radiation using a relativistic
electron beam. For the most part, previous theoretical analyses of this
instability have been carried out for an electron beam with uniform
density, neglecting the influence of finite radial geometry.3_6
Strictly speaking, a more accurate theoretical model of radiation
generation by the free electron laser instability, including a determina-
tion of the optimum value of the beam radius RO’ requires a linear
stability analysis for perturbations about an annular electron beam
propagating in a helical wiggler magnetic field. This paper develops
a self-consistent theory of the free electron laser instability
for a relativistic annular electron beam propagating in a helical
wiggler field, allowing for perturbations with general azimuthal
harmonic number 2. The present work extends the previous analysis7
by the authors, carried out for an undulator (multiple mirror) wiggler
field and 2 = 0 perturbations, to the case of a helical wiggler field
and arbitrary azimuthal harmonic number g.

The analysis is carried out within the framework of the Vlasov-
Maxwell equations for a relativistic annular electron beam propagating
in the combined transverse wiggler and uniform axial guide fields

described by

BO = B é& -~ &Bcosk
Y

082z - éBsing

Ozﬁx o‘iy !

where B

0 and &B are constants, Ao = 2n/k0 is the axial wavelength

of the helical wiggler field, and &

£ %y’ and e, are unit vectors

in the x-, y-, and z-directions, respectively. It is assumed that

the beam thickness (2a) is much smaller than the mean beam radius Ro,




and that v/yb << 1, where v is Budker's parameter, and mecz is the
characteristic energy of the electron beam. In Sec. II, equilibrium
properties are calculated for the choice of equilibrium distribution

function [Eq. (14))

0 222
fb = K X 6(Ch - Cg)s(c, - Yo VO)G(Cz) .
where Ch’ Cy, and Cz are the helical, transverse, and axial invariants8

defined in Eqs. (12), (11), and (13), respectively, K is a normalization
constant, and Vo and C0 are constants related to the radial thickness
and mean radius, respectively, of the beam.

The formal stability analysis for the free electron laser instability
is carried out in Sec. II1I, and a complete dispersion relation [Eq. (68)]
is obtained, assuming that Iw - (k + nko)Bbcl << koﬁbc, wc,wherew and
k + nko are the complex oscillation frequency and the wavenumber of the
perturbation, respectively, w, = eBO/mec is the electron cyclotron

frequency, ¢ is the speed of light in vacuo, and Bbc = (YE - 1)1/2

c/vy
is the mean axial velocity of the electron beam. The resulting
dispersion relation [Eq. (68)] constitutes one of the principal
results of this paper and can be used to investigate stability properties
for a broad range of system parameters.

In Sec. IV, the dispersion relation for the free electron laser

instability is investigated for w and k + nk, near the simultaneous

0

zeroes of the transverse (vacuum waveguide) dispersion relation,

2
2 a TE mode,
Y- (k 4+ nk, - k )2 R2 = { s,
2 0 0 ¢ 32 T™ mode
¢ g+l,s , ’

and the longitudinal dispersion relation T + (n/2y2)x = 0,
2,n b *n,n

where R 1s the rad{us of the conducting wall, T and y , are
c g,n n,n

defined in Eqs. (54) and (81) and By o and a g are the s'th roots
1 4 »




of the Bessel function J,,(B, ) = O and its derivative J',(a,, ) = 0,

) 2 .8 L L°,s
respectively. The abbreviations TE and ™ refer to transverse electric
and transverse magnetic polarizations, respectively. It is shown that
the maximum coupling between the longitudinal and transverse modes

occurs at a value of R, satisfying

0

02'1/02+1’s ,» TE mode,
RO/RC =

a2,1/82+1,s . T™ mode .

Moreover, the coupling coefficient increases considerably with increasing
radial mode number s. It is also found that the TM mode is slightly

more unstable than the TE mode.




Ly

II. EQUILIBRIUM CONFIGURATION AND ASSUMPTIONS

The equilibrium configuration consists of a relativistic annular
electron beam propagating in the combined transverse wiggler and uniform

axial guide fields described by

°ow
it
=)
+
o
ow

]
o
(2]

o, ~ GBcoskozgx - éBsinkoz%y s (1)

where BO and 6B are constants, AO = 21r/ko = const. is the axial
wavelength of the helical wiggler field, and éx’ éy’ and éz are

unit vectors in the x-, y-, and z-directions, respectively. The
electron beam has a characteristic radial thickness 2a and mean radius
RO’ and is located inside a grounded cylindrical conducting wall

with radius Rc' We introduce cylindrical polar coordinates (r,8,z)
with z-axis along the axis of the beam; r is the radial

distance from the z-axis, and 6 is the polar angle in ; plane
perpendicular to the z-axis. In cylindrical coordinates, the trans-

verse wiggler field 6% in Eq. (1) can be expressed as

SB B e+ 688%

n rwr ]

-6Bcos (8 - koz)gr + 6Bsin(9 ~ koz)ge , (2)

where ér and %6 are unit vectors in the r- and 6- directions, respectively.
To make the analysis tractable, the following simplifying assumptions
are made.

(a) The thickness of the annular electron beam is much smaller

than its mean radius, i.e.,

a/R0 << 1, (3)




(b) The characteristic transverse momentum Q1 of a beam electron
is small in comparison with the characteristic directed axial momentum

yme , 1.e.,

IRL' << mevb n Py (4)

where Vb is the mean axial velocity of the electron beam.

L (c) It is also assumed that
V/Yb << 1, (5)

where mecz is the characteristic electron energy, and v = Nbez/mc2

is Budker's parameter. Here, ¢ is the speed of light in vacuo, -e and
m are the electron charge and rest mass, respectively, and

Nb = fzn de f: dr r ng is the number of electrons per unit axial length.
Consistent with Eq. (5), the equilibrium self fields can be neglected
in comparison with the applied magnetic field RO in Eq. (1).

(d) It is assumed that the axial wavelength A, = 21r/k0 of the helical

0
1 wiggler field is sufficiently short that
2
w 2
c §B 2 2
72 < Kg? o (6)
lmo - wcl Bo
where wq and w, are defined by
eBO
wy = kOVb and w, = Yome . (7)
Consistent with Eq. (6), it is also assumed that
i 2w w R QP
cO c 2w, (8)

Imo - w 12 mevb B0

c
which is easy to satisfy for sufficiently short wiggler wavelengths.
} (e) In the stability analysis, it is assumed that the wave

1 perturbations are far removed from resonance with the transverse




cyclotron motion and the axial motion of the beam, i.e.,
lw - (k + nk )V, | << wesky Y 9)

where w is the complex oscillation frequency, and k + nko is the
wavenumber of the perturbation. It is also assumed that the cyclotron

motion and the axial motion is nonresonant with
’ (10)

where v, = pz/Ym is the axial velocity of a typical beam electron.
Within the context of Assumption (c), there are three exact
invatiants8 associated with the single-particle motion in the equilibrium

field EO [Eq. (1)]. These are the transverse invariant C,,

c=2+2+zeB( ~ymv,) + 2. s (1)
1 = P T Py cky Pz = ™ ck, R1°°R»
the helical invariant Ch,
cC. =P+ 1 (pz - ymeb) + %%E rsin(6 - koz) , (12)

h ] ko 0

and the axial invariant Cz defined by

2
eB. . \2 eB
0}._ 0} _ 2 .
(cz-cko)-(pz ck) ok Ra 6B (13)

where p = (p_, P,s P.) = ymy is the mechanical momentum, P, = r{p, - eB.r/2c)
R = \Pp» Pgs Pp) = YUY e~ "‘\Pa T %

is the canonical angular momentum associated with the axial field BO’

Ych _ (m2c4 + C%€2)1/2

~-1/2

is the relativistic electron energy, and Yp =
1 - Vilcz) = const.
In the present analysis, we consider the general class of annular

electron beam equilibria described by8

£ = K 6(Cy - vinivdrs(c, - cpe(c,) (14)

where Vo is a constant related to the radial thickness of the beam,




8
K is a positive normalization constant, C0 = const. is defined by
eB
_ 170 .2
%=-"27< R (15)
and G(Cz) is normalized according to
-]
f dCzG(C,) = 1. (16)
-0
In the parameter regimes of practical interest for free electron laser
applications, G(Cz) is strongly peaked around Cz = meVb, with
characteristic half-width ACz << yme . We therefore approximate
Eq. (13) by8
w, 6%
C, =P, -~ T =% g;'gg, (17)
where use nas been made of Eq. (8).
As a simple example, we consider the distribution function
in which all electrons have a same value of axial invariant Cz’ i.e.,
G(Cz) = G(Cz - ymeb) . (18)

After some straightforward algebraic manipulation that makes use of

Egs. (3), (6), (15), and (17), it can be shown that the electron density
profile associated with the distribution function in Egs. (14)

and (18) can be approximated by8

2
Nb/n

2

ap(o) = { (G - ) Eh - D

0 , otherwise ,

where r, = RO ST, Ty = Ro + s, and the effective Larmor radius r, is

1
defined by

L d A ) - - — e ———— —
oo, \\
— ——
¥ e Gatigh ih‘ A X . _ 2 s i i e i e e [P dMilnasas o u




2
r2=—Q+—-—-b-——3(6—B . (20)

In the lowest ourder calculation presented here, the electron density
profile in Eq. (19) is independent of 8 and z for system parameters
satisfying Eqs. (3) and (6). Additional equilibrium properties assoc-

iated with the distribution function in Eq. (14) are discussed in Ref. 8.
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II1. LINEARIZED VLASOV-MAXWELL EQUATIONS

In this section, we make use of the linearized Vlasov-Maxwell
equations to obtain an eigenvalue equation describing the free electron
laser instability in an annular electron beam. In the subsequent
analysis, it 1is assumed that all perturbed quantities have temporal

and spatial variations of the form
Sy(x,t) = éi(g)exp(-iwt) R

where Imw > 0, and y(5) is the amplitude of the perturbation. Using
the method of characteristics, and neglecting initial perturbations,

the perturbed electron distribution function is given by

t
— t{_gt ' _ _];_Z_;___ ' '
81, (Xopst) = eJ_ dt [ Vide(x',t') - o A ,tY)
(21)
1 A 1 L}
A UoxaaGhe'y o 4
c BR' fb(?\f 92 ) »
where d%'/dt' = x' and dg'/dt' = —ex' x §0(¥')/c, and the particle

trajectories (¥', E') in the equilibrium field configuration satisfy
the "initial" condition ¥'(t' = t) = % and Q'(t' = t) = p- In Eq. (21,
the perturbed electric and magnetic potentials, 8¢ and dé, are determined

self-consistently from the linearized Maxwell equations
2
Vz S S R 8¢ bre d3p sf, ,
2 2 b
¢ at

-SEJd:;pV(‘Sf
c N

b ? (23)

(24)
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Without loss of generality, the perturbation amplitudes are
expanded according to
5¢(¥) = z Z wén)(r)exp{i[le + (k + nko)z]} . (25)
== nx=—
Correct to lowest order, the axial motion of the electrons is free-
streaming, i.e.,
1) pz
z' =z +—= (t' ~t) . (26)

v. ym

The transverse trajectories are calculated for the case where the

wiggler amplitude satisfies Eq. (6), assuming that the axial and
transverse motions are far removed from cyclotron resonance, i.e.,
2 2 2 . 7,8

kovz # w, [Eq. (10)]. After some straightforward algebra, we

obtain i

v' = vcosw T - (r - R)Dwsinw 1
r r c 0" e c

w
y— SB {- v.cos(6 - k

- z - kv 1)
w, wo BO 2 0 0z

| + [(wc/ko)sin(e - koz)sianT + v cos(e - koz)coswctl} ,(27)

and

' .
v, = (r - RJ)w . cosw 1 + v _sineg 1
0 ( O) C C r c

w
+ ——E SB {v

T zsin(e - koz - kovzr)
c 00

- [(wc/ko)sin(e ~ kgz)cosw 1 - v cos(e - koz)sinmcr]} ,(28)

where use has been made of Eqs. (12) and (26), and 7 = t' - t.
As evident from Egqs. (27) and (28), the radial and azimuthal
orbits contain oscillatory contributions proportional to COSw T,

sinmCT, sin(6 - koz - kOVzT) and cos(6 - koz - kova). For present

- T e—— ———— —— R - - -
Mt PR ) ) . . i
T T P ST R SR PR N S R P SR o
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purposes, in the t'-integration on the right-hand side of Eq. (21),

we retain terms proportional to [w - (k + nko)pzlym]_l, and assume that
the value of [w - (k + nko)pz/ym] is well removed from resonance

with the cyclotron motion and the axial motion of the beam [Eq. (9)],
i.e.,

lw - (k + nko)pz/Ym] <<a, o, kgVpo.
Within the context of Eqs. (1) and (9), the perturbed distribution function

in Eq. (21) can be approximated by7

R 0 ) )
6fb(¥’g) = —EJ_m diexp(~iwt) Z(Ymiw(6¢ _.% X' . GQ)

0 29 o
3 f 3
ol e -2yt I Al R ge -1y 2i_sa).—b
oSy 5 %)]apz w5z 00-cx -5z ) 3p,
1

CZ 1/2.

where y = H/mc2 = (1+ Rz/m2 Moreover, making use of Eq. (9),

T

only those contributions to v; and Ve

proportional to sin(6 - koz - kovzr)
and cos(6 ~ koz - kovzr) are retained. That is, on the right-hand
side of Eq. (29), we retain contributions to v; and vé of the form

w

' c éB
= . c o5 - -k , 30
Vo v, T BQ cos (6 koz ovzr) (30)
and
Ye 8B
' 3 — — p—— -— —
Ve = v, N Bo sin(eo koz kovzr) . (31)

Finally, since the oscillatory modulation of the radial and azimuthal

orbits is small-amplitude [Eqs. (3), (6), and (9)]), we approximate

r' =r, ' =9 , (32)

in the arguments of the perturbation amplitudes on the right-hand side

of Eq. (29), i.e.,

0 (e yexpline') = o™ (Dexp(120)
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Substituting Eqs. (25) and (30) - (32) into Eq. (29), and making
use of Eq. (9), we find after some straightforward algebra that the

perturbed distribution function Gfb(ﬁ’k) can be approximated by

{26 + (k +
o Gop) = e I exp{i[g (k nko)z]} A ¢(n) (r)
b X2k 2 w~ (k + nk.)v n{"2 c z ]
»Q1 0’7z
+ _jL ..‘:5 ____.._wc iB_ [A A(n+1) - A (n 1)]
2c¢c w_ - w, B n+l76,2-1 a-18 8,8+l
c 00
1% %  ¢B (n+1) A(a-1)
YT w - ey B, Doe1®n,e-1 * Aa-1bn, el (33)

where the function An.(g,w,k) is defined by

oy 2£0
An,(g,w,k) 2[ymw - (k + n'k )p ] *——-+ (k + nk ) —;— . (34)
apl z

It is convenient to introduce the dimensionless potential

amplitudes defined by

3,0 = =5 M) - 2l (35)
mc
- _ e (n+1)
Ae,lil(r) = mcz £+1( ) s (36)
and
. __e_ (n+1)
r g1 (F) ch r 21 (% - (37)

Moreover, we introduce the dimensionless parameter

o= —=22 (38)
2y. mc k
Yp 0

and define the effective susceptibility x_ n.(w,k) by
1]

R A v( ,w,k)
X ¢ (w,k) = 4ne2f crdr[d:’p n' X . (39)
n,n 0

w - (k + nko)vz
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To simplify the present analysis, it is also assumed that

wo ¢ ? (40)

vhere wg = kOVb and w, = eBo/ybmc. Equation (40) is easily satisfied
in parameter regimes of practical interest for free electron laser
applications.

The integral fd3p¥6%b in Eq. (23) is required to evaluate
the r-, 6-, and z~components of the perturbed current density.
Within the context of Eqs. (3), (6), and (9), it is important to
note from Eqs. (11) and (14) that the quantity An,(g,w,k) def ined
in Eq. (34) is an even function of P, - P where8

w

0
= Zybmc P hcos (8 - koz) . (41)

%
r0 0 c

Therefore, 1t follows from Eq. (33) that

[l

3 : 3 :
Jd p v, ¢f J d7plp g/rpmof,

"

where we have approximated 7y Yy which is consistent with Eq. (9).

That is, the perturbed radial current 1is given approximately by

(a3 : . n
eJd PV, Afb 2ech cos (v kOZ)‘nb . (42)
where use has been made of Eq. (4"). It can also be shown that the
perturbed azimuthal current is given approximately by
3 . .
-e|d7pv if, = 2ecsin(® - koz)énmy, . (43)

Making use of Eqs. (33) - (43), the Maxwell equations (22) and

(23) can be expressed in the approximate form




2 2 §(r -~ R.)
13 _ 3 _ & w _ 2\ . -
3% Far r2 + cz (k + nko) ol(r) ZR o(w,k) , (44)
2 2
13 a3 _(+ D" +1  w 2\ -
rar far 2 + 2° [k + (0 - DkgI"P A o4 (0)
R §(r - R,)
2i(1+1) - _ 0
i Ae,l+1(r) -7;~———-Ao(w,k) . (45)
r 0
: 2
13 3 (@7 +1  w - 2\ .
rar " oar Tt e+ (n=Dky1" P Ag g4 (F)
8(r-Rp)
21(i+1) 2 - o
+ 5 Ar'R+1(r) = R (iA)o(w,k) , (46)
r 0
2 2
oo G- +1  w 2\,
riT Tor 2 +5g - lk+ (@t DI™ A (0)
r (o
i . §(r - R,)
2i (¢-1) . 9",
~ 5 AO,R—I(r) R Ao(w,k) (47)
r 0
2 2
o e oG- +1 W AN
rop Ty 5 +t =5 (k + (n+1)k0] AG,R—l(r)
r [of
ey S(r - R.)
2i(i-1) « — 0"
+ 2 Ar,i-l(r) Ro (-iA)a(w,k) , (48)

for a thin annular beam satisfying Eq. (3). In Eqs. (44) - (48), the

source function (u,k) is defined by

\.(“'k) = xn,nok(RO) - A [Xn'n+1A(§'£"l

(R (Ro)]

O) - xn,n—lA6,1+l
(49)

- A[Xn.n+lAr,£-l(R0) + Xn.n-lAr,R+1(R0)]

Since the right-hand side of Eq. (44) vanishes except at r = RO’

Fq. (44) can be cxpressed as

2
13 Rl £ 2 )
(r arFar - 20 pn) %(r) 0. (50)
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for r # Ro. In Eq. (57), the parameter pi is defined by
2 2,2 2
p, = w /¢ - (k + nkp)” . (51)
e The solution to Eq. (50) is given by

AJl(pnr) + BNl(pnr) . Ro <r < Rc ,

;n(r) = (52)

CI (pyr) 0 <r <R,

where Jz(x) and Nl(x) are Bessel functions of the first and second

kind, respectively, of order ¢, Rc is the radius of the conducting wall,
and the constants A, B, and C are determined from the appropriate
boundary conditions. Multiplying Eq. (44) by r and integrating

from Ro(l-c) to R0(1+€), with ¢ » O+, we obtain7

Mo n@skey (Ry) = - jgo(w,k) . (53)

where the longitudinal dielectric function FQ n(w,k) is defined by
’

SNCRVANG
L EIN G ) = L CON €D

Fg’n(w,k) = (54)

with gn = an and Ln Rp..

0 c'n

The transverse dielectric functions associated with Egqs. (45) - (48)

are calculated in detail in Appendix A. For example, for 0 < r < RO’

the solutions to Eqs. (45) and (46) are given by

- (L+1) (L41)
Ar,2+1(r) = C 3, Py _17) + € 3y 42Pp1T)
(55)
) (2+1) (2+41)
Ay ae1 () = 1€, (o ym) = HCT T, o (R T)

= wz/c2 - [k + (n—l)/kolz, and the constants C52+1) are

, 2
where po o

determined from the appropriate boundary conditions. After some

straightforwiard algebraic manipulation, which is summarized in
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Appendix A, it can be shown from Eqs. (45) and (46) that

+ (2+1) 1
ORI NGNS FYIOR SN (56)
and f
- (2+1) _ 1
D2+l(m,k)C_ Jl(gn_l) = 2 I\o(w,k) » (57)
where the transverse dielectric functions D;+1(w,k) and D;+1(w,k) are
defined by
1 ]
+ Cne17 041 a1 041 By
Dpyy (wsk) = - J (€ 3, Gk ) (58)
2 °n-1""242 " °n-1
and
g,,1(¢__)/n3 (1)
- 241 °n-1 £ °n-1
D£+1(w,k) = (59)

Bay1 (Cn-1INg(Epy) — (6 ) 7

Here, the prime (') denotes (d/dx)J (x). In Eqs. (58) and (59),

2+1
2 _ 2,2 _ . ' 2.2 2 2,2 ' 2,.2

Lo = [w™/c (k + n ko) ]Rc’ En, = [w/c (k + n ko) ]RO, and
the function gz,(c) is defined by

23, (2) 35, (3)
' (%) = V v .
By T NG (@) + T, (W, ()

(60)
Similarly, the solutions to the coupled differential equations
(47) and (48) are given by

- (2-1) (-1)

Al o1 () = €27 3, ) + G T ()
(61)
Ae,z-l(') = iCEQ-I)Jm-z(Pnﬂr) - 1Cil—l)*’z("ml‘) g
for 0 <r < RO' From Eqs. (47) and (48), we obtain
D:_l(w,k)ciz'l)JE(gn+l) = 2 ho(w,k) , (62)
and
ORI G I Y O S (63)
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where the transverse dielectric functions D:_l(w,k) and D;_l(w,k) are

defined by
+ By1 (a4 /™I (Byy)
Db = T W, (e ) ST G (64
h £-1""n+1" "2 "n+l £ n+l
and
L
- Tat172-1 Cne1) 701 Gy
Doy (wsk) = - J (€ . J, () (63)
£ n+l7"2-2""n+l
b
. Substituting Eqs. (55) and (61) into Eq. (49), the source
function 0(w,k) can be expressed as
- ; _ (2+1)
U(W)k) = Xn,n¢Q(R0) 2 (X“,n"lc- Jl(cn-—l)
(66)
.vi-1)
* o, n+1Y T ()]
Equations (53), (56), (57}, (o.), and (63) constitute a set of linear
algebraic equations relating &Q(Ro), C§2+1) and Cig-l). However,
we note from Eq. (66) that the common source term o(w,k) is related only
to the constants ¢Q(R0), CEQ+1), and Cig—l). In this regard, the
equations containing Ci£+l) and szhl) are completely decoupled from
the remaining equations. Without loss of generality, Eqs. (56)

and (63) are therefore omitted from the subsequent stability

analysis. Making use of Eqs. (53), (57), and (62), we obtain the matrix

(2-1) (241)

equation relating &E(RO). ¢, e, and STV € D), teel,

m n L N
rl,n + 2 2 *a,n ° 2 AXn,n-l ' ) Axn,n+1 45E(RO)
b b b
1 - 2 2 (241) .
2 Axn.n ’ D1+1 +A Xn,n-l ’ A xn,n+1 C_ Ji(cnnl) 0,
1 2 + 2 (2-1)
2 Axn,n ’ A xn,n—l ' Dn-l +A Xn,n+l + Jl(£n+1

(67) |
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which is similar in general form to the matrix equation obtained by Uhm
and Davidson7 for the free electron laser instability associated with
an annular electron beam propagating through an undulator multiple
mirror magnetic field. Of course, the transverse dielectric

functions D;+l and D';_l for a helical wiggler field are different from

those for an undulator field.
The condition for a nontrivial solution to Eq. (67) is that

the determinant of the matrix vanish. This gives the general dispersion

relation

+ — L
D2-1D£+1(F£,n + 2 2 Xn,n)
b
(68)

_ 2, +
_—A(Dilx )

- r _
-1*n,n-1 + D2+1Xn,n+l 2,n 0,

which can be used to determine the complex eigenfrequency w in terms of

k + nko, kO, v, A, and A.




20

IV. FREE ELECTRON LASER STABILITY PROPERTIES

We now investigate the free electron laser stability properties
predicted by Eq. (68) for a relativistic annular electron beam
propagating in a helical wiggler field. Consistent with Eqs. (5)

and (9), the eigenfrequency w can be approximated by w = (k+nkO)Vb. We
1/2

: : _ 02,2 2
therefore approximate Cn+1 = {w/c [k+(n+l)k0] } Rc by
(k+nk0)2 ,)1/2
§n+1 =1 '—YT‘-—‘— + Zk.o(k+nk0) + ko RC . (69)
b

After careful examination of Eq. (64) together with Eqs. (60) and (69),
it is evident that the transverse dielectric function D:_l(w,k) is
never equal to zero for k + nko > 0. 1In this regard, for small wiggler
amplitude (A << 1), we investigate free electron laser stability

properties for w and (k + nko) near the simultaneous zeros of the (A ~» 0)

transverse dispersion relation DE+1

(w,k) = 0, and the (A - 0) longitudinal
dispersion relation FQ ot (n/ZYg)xn n - 0. For small but finite A,

the general dispersion relation in Eq. (68) can then be approximated

by the simplified form

n _ .2
DQ+1(r2,n + 2Y2 Xn,n) = A Xy n-1"e,n (70)
b

Equation (70) is one of the principal results of this paper and can be
used to investigate stability properties for a broad range of system
parameters.

Making use of

P, = i = i(k + nk))/y, (71)

the longitudinal dielectric function FE o can be expressed as
- 9

1,(a R)/T, (anRy)

- X
Foon = 2 D4 Ry) (72)

U
2 Ii(anc)Kl(anO) - Ii(anO)Kl(anc)
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for k + nky > 0. In Eq. (72), Il(x) and K (x) are modified Bessel
functions of the first and second kind, respectively, of order g, and
h(anO) is the effective longitudinal wave admittance. For short
axial wavelengths with (Rc - Ro)(k + nko) >> yp, it is readily shown
from Eq. (72) that the wave admittance h can be approximated by
k + nko
h(anO) = 2 . Ry - (73)
b

For free electron laser applications characterized by axial wavenumber y
k + nko = (1 + Bb)yiko, Eq. (73) constitutes an excellent approximation.

For very small wiggler amplitude (A > 0), or for very low beam
density (v - 0), it is evident from Eq. (70) that the linear dispersion

relation for transverse perturbations is given by

D, q(wk) =0, (74)

and the linear dispersion relation for longitudinal perturbations is

given by

“ P
2 X ,n =0 ’ (75)
2Yb

where k + nko > 0 has been assumed. Iliaking use of Egs. (59) and (60),

Fz,n(w,k) +

the dispersion relation in Eq. (74) can be expressed in the equivalent

form
2
2 a
w_ _ 2 _ Titl,s
c R
c
for the transverse electric (TE) polarization, and
w2 2 B§+1 s
= - (k + nk, - k,) = —3+—, 77)
CZ 0 0 R2
c

for the transverse magnetic (TM) polarization. In Eqs. (76) and (77),

o, is the s'th root of J;.(aﬂv

s) = 0, and %' is the s'th root
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of J ,(8

¢! 1',5) = 0. Equations (76) and (77) are the familiar TE and TM

mode dispersion relations for the vacuum waveguide modes.
For future reference, Taylor expanding the transverse dielectric

function D, .(w,k) in Eq. (59) about the vacuum waveguide results, it is

2+1
straightforward to show that D;+l(m,k) can be approximated by
2 2
R J, ,(a )
- 2 2 2+1" " f+l,s
D, ., (w,k) = —— |a - (a+1) J >
2+1 20‘2 2+1l,s Jﬁ(a2+1,sR0/Rc)
2+1,s (78)
2 a2
w 2 2+1,s
x 5 (k + nkO - ko) -]
c R
c
for the TE modes, and
2 ! 2
DT (w.k) = Re 7o 41,6
2+1 2 JQ(BQ+1,SRO/RC)
2 g2 %)
x % - (k + nk. - k )2 o _i4l,s ,
2 0 0 2
c RC

for the TM modes.
In order to investigate the influence of axial momentum spread
on the free electron laser instability, we assume an axial distribution

function of the form

- L 1
G(Cz) o

(c

(80)
2 2
z " VW)t

where A is the characteristic spread in Cz about the mean value ybmvb.
We further assume that the spread A is small in comparison with
meVb, i.e., & << mevb' Substituting Egqs. (14), (34), and (80)
into Eq. (39), we then obtain
2 ' 2
wo - (k+nk0)(k+n ko)c

2
X .= ?2 37 (81)
b lw - (kink IV, + i|ktnkg|a/y m]

within the context of Eqs. (6) and (9).




For small but finite wiggler amplitude and low beam density,

we make use of Eqs. (72), (78), (79), and (81), to simplify the

full dispersion relation in Eq. (70). This gives

2
2 a |k+nk . |4)2
25 - (k + nko -~ k0)2 - 2l w - (k+nkQ)V, + 1 —0
c R2 b 3m
c b
u2
2 2+
- ;; [Zko(k+nk0) - kg R (82)
Ty Rc
2
2 a
_ 2 vc _ _ _4+l,s E
= 7 | Ko kinkgkg) 2| Qs (Ro/RS
YbRc Rc
for the TE mode polarization, and
2 2
2 B [k+nk |4
w 2 2+1,s . 0
Cz (k+nk0—k0) - Rz w - (k+nko)Vb + i ———2;———
c b
2 c2 2 Bi+l
- —%?—— 2k (ktnky) - kg - —5=2 (83)
B2
N 2 vc oy tl,s| M
R ko (ktnkg=ky) 2 Qs Ro/R) >
Yp%c c

for the TM mode polarization. In Egqs. (82) and (83), the TE and TM

, . E M .
coupling coefficients, QQs(RO/Rc) and QRS(RO/RC)’ are defined by

2 2
E _ %41,s Joagy sRo/R
Qis(Ro/Rc) == 3 T (e ) (84)
041 ¢ = (OHD) 2+1°%+1,s
and )
M JQ(82+1)SRO/RC)
Qs Ro/R) = |7 37 (3 ) | ®)
g+1 "+, s

respectively. FEauations (82) and (B3) are the dispersion relations

used in the remainder of this section, and can be used to investigate

stability properties for a broad range of system parameters of experimental

interest.
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A careful examination of Eqs. (84} and (85) shows that the
coupling between the transverse and longitudinal modes is maximum

' = ' -
whenever Jg(a RO/RC) 0 for the TE mode, and J2(82+1,SR0/RC) 0

2+1,s
for the T™M mode. Here, the prime (') denotes sz(x)/dx. In this context,

it is found that the maximum growth rate for perturbations with

azimuthal harmonic number 2 occurs for a value of RO/Rc given by

/me+1 ¢ TE mode ,
’

/8

a
R/R, = 2,1 (86)
™ mode ,

%,1"%+1,s

where o is the first root of J;(a ) = 0. Equation (86)

2,1 2,1

for the TE mode, and al,l < BQ+1,s

(™M),

is valid only when al,l S %el,s

for the T™M mode. For a > (TE), or a > B

0,1 7 %a+l,s 2,1 2+1,s

the maximum growth rate occurs for RO/Rc = 1.

Shown in Fig. 1 are plots of (a) the ratio RO/Rc that satisfies
Eq. (86), and (b) the corresponding coupling coefficients Qis and Qfs
for several values of azimuthal and radial mode numbers, £ and s.

Several points are noteworthy in Fig. 1. First, the maximum couplirs

occurs at RO/RC = 1 for the (2,s8) = (0,1) mode, where ey y = 3.83,
b
ay q 7 1.84 and Hl 1 ° 3.83. Second, except for azimuthally symmetric
» ’
perturbations (i = 0), the value of RO/Rc corresponding to maximum

coupling increases with increasing mode numbers ¢ and s. Third,

from Fig. 1(b), for a specified value of azimuthal harmonic

number ¢, the maximum couapling coefficients corresponding to the values
of RO/RC in Fq. (86), increase rapidly with increasing radial mode
number s. Finally, for specified values of (%,s), we note from

Fig. 1(b) that the maximum value of Q? s is slightly larger than QE s
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Defining the normalized Doppler-shifted eigenfrequency by
Q= [w- (k+nko)vb]/k0c s (87)

we calculate the normalized growth rate Q. = 1lmR numerically from Eqs. (82)

i
and (83) for a broad range of system parameters Y v/yb, A, A/mec,

RO/RC, 2, and s. Shown in Fig. 2 are plots of the normalized growth

rate Qi versus (k + nko)/k0 (Eqs. (82) and (83)] for (&,s)

= 10, v/y, = 0.02, A2 = 0.01, A/y,mc = 0.002, and R./R =
b b 0" ¢

1,3,
/“2,3

for the TM mode. It is evident

b “1,1

for the TE mode, and RO/RC = 31,1/82,3
from Fig. 2 that the TM mode is slightly more unstable than the TE
mode, which is consistent with Fig. 1(b).

Shown in Fig. 3 are plots of the normalized TE mode growth rate

Qi versus (k + nko)/k0 obtained from Eq. (82) for RO/RC = /

%,1"%+1,s

[Eq. (86)]. The two plots correspond to (a) £ = 1 and several values

of s, and (b) s = 3 and several values of %, and parameters

otherwise identical te Fig. 2. As predicted in Fig. 1(b), it is

evident from Fig. 3(a) that for a specified value of azimuthal mode

number %, the growth rate and range of k-space corresponding to instability
increase rapidly with increasing radial mode number s. For RO/RC
satisfying Eq. (86), we therefore conclude that perturbations with

high radial mode numbers exhibit stronéer instability than the fundamental
mode (s=1). Moreover, the k-value corresponding to maximum growth is
somewhat reduced as the radial mode number s is increased. For

example, in Fig. 3(a), the maximum growth rate occurs at k + nkg = 195 ko
for s = 1, and at k + nkyp = 187 ko for s = 5, The maximum coupling
coefficient in Fig. 1(b) decreases slowly with increasing azimuthal

mode number 2, as does the instability growth rate [Fig. 3(b)].

The instability results for the TM mode are similar to those for the

TE mode. However, the TM mode is sonewhat more unstable than the TE mode.
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V. CONCLUSIONS

In this paper, we have investigated the free electron laser
stability properties for & relativistic annular electron beam propagating
in combined transverse wiggler and uniform axial guide fields. The
stability analysis has been carried out within the framework of the
linearized Vlasov-Maxwell equations. The equilibrium properties
and basic assumptions were summarized in Sec. II. The formal
stability analysis was carried out in Sec. 111 for general
azimuthal harmonic number £, and a complete dispersion relation
[Eqs. (68) or (70)] for the free electron laser instability was
obtained, including the important influence of finite radial geometry.
In Sec. IV, this dispersion relation was investigated for w and k + nko
near the simultaneous zeros of the transverse and longitudinal dielectric
functions. It was shown that the maximum coupling between the longitudinal

and transverse modes occurs for values of RO/Rc satisfying RO/Rc =

/8

a. . /a for the TE mode polarization, and RO/RC = %1841,

L,1" "i+l,s
for the TM mode polarization. Moreover, the strength of the coupling

increases considerably with increasing radial mode number s. It was

also found that the TM mode is slightly more unstable than the TE mode.

ACKNOWLEDGMENTS

This research was supported in part by the Independent Research
Fund at Naval Surface Weapons Center and in part by the Office of Naval

Research.

e e




217

APPENDIX A

ELECTROMAGNETIC POTENTIALS IN A CYLINDRICAL WAVEGUIDE

In this appendix, we investigate properties of the electromagnetic
potentials in a cylindrical waveguide with radius Rc’ Within the context

of the Lorentz gauge condition,

2
at

0=

VoAt + ¢(x,t) = 0, (A.1)

the electromagnetic potentials, ¢ and Q, are determined from the
Maxwell equations

2

1

(v:Z - 2 3 2) ¢(%9t) = _4"0(¥:t) ’
c dt

and (A.2)

2
2 1 3
(v - = ——2—) Alx,t)
c 3t

where o(%,t) and {({,t) are the charge and current densities,

4
- 21'%(%9t) ’

respectively, and ¢ is the speed of light in vacuo. In the present
analysis, we assume that all quantities vary with space and time

according to
W(x,t) = V(r)expi(e8 + kz - wt)} , (A.3)

where £ is the azimuthal harmonic number, k is the axial wavenumber,
w is the complex eigenfrequency, and y(r) is the amplitude. The

components of the magnetic and electric fields can then be expressed as

ér(r) - 1(n/r)Az(r) - kA (n)
Be(r) = ikAr(r) - (a/ar)Az(r) . (A.4)
B,(r) = (1/r)(3/3x)(xrA)) = (L/r)%A (r) ,
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and
E (r) = -(3/30)8(x) + (1u/c)A _(r)
Ee(r) = ~(i/r)¢(r) + (1m/c)Ae(r) ’ (A.5)
E_(r) = -iké(r) + (1w/c)A (r) .
Making use of Eq. (A.3), the Maxwell equations (A.2) can be expressed as
13 3 22 2\ -
('1:5‘1.‘1'3—1_“:‘2“"1) )¢(r) = ~4mp(r) , (A.6)
(122 - IS Y RN LY R L R
r 3r 3r 2 P ) r 2 8 ST e
(A.7)
2
13 3 _2"+1 e _hn s
( rar | ar 2 ) Ag(r) + 75~ r( ) Je(r) ’
(A.8)
and
13 3 22 2y 3 4n -
( AT TR :5 +p ) A (r) = - = J (f) , (4.9)
where p is defined by
p? = Wit - k%, (A.10)
Introducing the new potential variables
At(r) = Ar(r) + iAe(r) , (A.11)
in Eqs. (A.7) and (A.8) gives
13 2 _ _(_Li__l.)_ - 5_1 3
(r o 2 ¥ A =-25.), (A.12)

where the current densities 3‘(r) are defined by 3+(r) = jr(r) + i3e(r).
In many charged particle beam applications, the perturbed

charge density and axilal current are related by
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3,(r) = nch(x) , (A.13)

where n is a constant. We therefore restrict the subsequent analysis
to the case where Eq. (A.13) is satisfied. After a careful examination
of Eq. (A.6), (A.9), and (A.13), we find that the axial component of

vector potential is linearly proportional to $(r), i.e.,
Az(r) = n&(r) . (A.14)

Making use of Eqs. (A.1), (A.5), and (A.14), the appropriate

boundary conditions at r = RC are given by

-

PR = A (R) = A (RY = [GADAD], _p =0, (A.15)

provided

ke - nw #0 . (A.16)

Here, RC is the radius of the conducting wall.

In a vacuum waveguide, where p = 0 = %, the solutions to

Eqs. (A.6), (A.9), and (A.12) are given by

$(x) = (/M)A (1) = 83 ) (A.17)

and

Ai(r) = atJEtl(pr) , (A.18)

where ¢ and a_ are constants, and Jl(x) is the Bessel function of the

first kind of order 2. After some straightforward algebra that makes

use of the definitions Ar = (A_ + A+)/2 and Ae = i(A_ - A+)/2,

and the boundary condition Ae(Rc) = [(B/Br)(rﬂr)]R = 0 in Eq. (A.15),
c
we obtain a, = a_ in Eq. (A.18). Therefore, the radial and

azimuthal components of the vector potential can be expressed as !




Rr(r) = a,tJ (pr)/pr ,

Ag(r) = ia+J,'l(pr) R

for ke - nw ¥ 0. In Eq. (A.18), the prime (') denotes (d/dx)Jg(x).
For an electromagnetic wave described by Eq. (A.19) with a ¥ 0,

the boundary condition AG(RC) = 0 implies

2 uz
u - K = —;—“ , (A.20)
c Rc

where %o is the nth root of Ji(uln) = 0. Equation (A.20) obviously
satisfies Eq. (A.16). Moreover, from the boundary condition

&(Rc) = 0, we also note that the amplitude ¢ satisfies ¢ = O,

which is consistent with the definition of the transverse electric (TE)
mode polarization characterized by éz(r) = 0.

Similarly, for ¢ # 0, we find the transverse magnetic (TM) mode

dispersion relation

2
2 B

e - K% = -—%3 , (A.21)

c Rc

where an is the nth root of the Bessel function JR(BQn) = 0.

Since Ji(sln) # 0, the constant a, = 0 is required to satisfy the

+
boundary condition Ae(RC) = 0, which is consistent with ﬁz(r) = 0.
From the Lorentz gauge condition in Eq. (A.l), we also find n = w/kec,
and Eq. (A.16) can be expressed as k2c2 - w2 ¢ 0. To summarize,

for a vacuum waveguide, the TM or TE modes are exclusively described
by the potentials in Eq. (A.17) or Eq. (A.19), respectively.
As a second example, we calculate the electromagnetic dielectric

function for the case where the radial and azimuthal current densities

are given by
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- " c §(r - Ro)
Jr(r) = -iJe(r) = ———E;———— K, (A.22)
where RO and K are constants. In this case, Eqs. (A.7) and (A.8)
can be expressed as
2 . §(r-R.)
13 3 291 _ 218 _ 0
(r —r =+ P ) A - 55 a0 = — K, (A.23)
r r 0
and
2 §(r-R,.)
la _3a _ 42741 24¢ R
(% TR TR +p ) A(r) + > A_(r) R iK . (A.24)

Substituting Eq. (A.11) into Eqs. (A.23) and (A.24), it is found
that the solutions to the coupled differential equations (A.23) and
(A.24) are given by

a,J ) + b N, (pr) , Ry <r <R,

A, (x) = (A.25)

chzzl(Pr) , 0 <r < RO .

where the constants a,, b, and C, are determined by the boundary
conditions that the potentials ﬁe(r) and Ar(r) are continuous at r = RO’
and that Ae(r) and (B/Br)(rﬁr) vanish at r = Rc' According to Eq. (A.1l1),

Eq. (A.25) can also be expressed as

a_JE_l(pr) + b_Nl_l(pr) + a+J2+1(pr) + b+ £+1(pr) ,
Ar(r) = RO <r < RC , (A.26)
C_Jk_l(pr) + C+Jl+1(pr) s 0 <r < R0 ,

and

aJ,_j(pr) +b N, _,(pr) - aJ . (pr) - bN ,(pr)
Ae(r) = i RO <r <R_, (A.27)
C-Jl_l(Pr) = (Pr) , 0 <r <R

+ 2+1 0’

Multiplying Eqs. (A.23) and (A.24) by r and integrating from Ro(l—c)

to R0(1+e), with ¢ » O+, we obtain after some straightforward algebra,

+ 1
Dl(w,k)C+J£+1(g) =5 K (A.28)
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- 1
D, (w,k)C_J, (&) = 5 K, (a.29)
where the dielectric functions ﬁ:(w,k) and D;(w,k) are defined by
h g, (g)J, (%)

+ R £

D (w,k) = - , (A.30)
L Jl_l(C)J£+1(€)

and
2J£(L)J£(C)/ﬂJ2_1(€)

_ Dy = T EITCON, (0 - (3, (N () + I (O (€13, (0 °
(A.31)

Here, £ = pRo and ¢ = pRc.
In a similar manner, we also obtain Egs. (A.28) and (A.29)

in circumstances where the radial and azimuthal current densities

are related by

I () = 13.(r) = - & f(r-RG) X (A.32) 1
T r 8 4m RO ‘ *

In this case, however, the dielectric functions are defined by

B k) = ‘ 2J2(¢)J;(c)/nJﬁ+%(5) ‘ ’
L 23, (03 (DN, (8) - [3,(ON (2) + AHOENDE L.
(A.33)
and
¢ £d, ()3 (T) 5
D (w,k) = = 5 . (A.34)
2 JHl(i)JQ_l(f,)
o
1 \ .\‘ \ * ———
“ ]




33

REFERENCES

1. T. C. Marshall, S. Talmadge, and P. Efthimion, Appl. Phys. Lett.
31, 320 (1977).

2. D. A. G. Deacon, L. R. Elias, J. M. M. Madey, G. J. Ramian,
H. A. Schwettman, and T. I. Smith, Phys. Rev. Lett. 38, 897 (1977).

3. R. C. Davidson and H. S. Uhm, Phys. Fluids 23, in press (1980).

4. A. T. Lin and J. M. Dawson, Phys. Fluids 23, 1224 (1980).

- 5. P. Sprangle, C. M. Tang,'and W. M. Manheimer, Phys. Rev. A21, 302 (1980).

6. 1. B. Bernstein and J. L. Hirshfield, Phys. Rev. A20, 1661 (1979).

7. H. S. Uhm and R, C. Davidson, "Theory of Free Electron Laser
Instability in a Relativistic Annular Electron Beam', submitted for
publication (1980).

8. R. C. Davidson and H. S. Uhm, "Helically Distorted Relativistic
Electron Beam Equilibria for Free Electron Laser Applicatiomns',

submitted for publication (1980). A

a . T .. . " A s s




Fig. 1

Fig. 2

Fig. 3

34

FIGURE CAPTIONS

Plots of (a) the ratio RO/Rc satisfying Eq. (86), and (b) the
corresponding coupling coefficients Qis and Qgs for several
values of azimuthal and radial mode numbers, £ and s.

Plots of normalized growth rate Q, versus (k + nko)/ko

i
[Eqs. (82) and (83)] for (2,s) = (1,3), Yp = 10, v/Yb = 0.02,
A2 = 0.01, A/ybmc = 0.002, and RO/Rc satisfying Eq. (86).
Plots of normalized TE mode growth rate Qi versus (k + nko)/k0
[Eq. (82)] for RO/Rc = al,l/ai+l,s’ (a) 2 = 1 and several

values of s, (b) s = 3 and several values of %, and parameters

otherwise identical to Fig. 2.
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